

In this guide for SQL operations, we will not focus on teaching
you syntax, but we will focus on letting you know the need for

each statement in SQL so you can translate your require-
ments, but first let us define what is SQL

SQL stands for “Structured Query Language”, which is a language that was invented to enable any user from

extracting information from structured datasets “Tables”.

Tables consist of two main components: Rows and Columns, each column has his own name, and data type

which describes the type of information inside these columns such as string, number, decimals, and so on.

So now we know SQL is a language to help us

extract information from Rows and Columns, lets

now jump to the basic blocks of any SQL query

What is SQL?

R
ec

or
d

R
ec

or
d

Coloumn

ColoumnColoumn

Get in the result from table “EMPLOYEES”,

 the following columns:

- FIRST_NAME

- LAST_NAME

- HIRE_DATE

So, you can select certain columns

out from all table columns

Basic Blocks

Query Translation

If you need to see all columns of a table, simply you can replace the column names
with “*”

I do not like these column names!
What if you do not want this column names to be in your final result or you need to represent these

data to someone else who will not be ware of these column names and you need to make It more clear

for him.

In this case we can use an “column alias”, which change the column name in the output query

To do that we can simply mention the new column name directly in double quotes or use AS keyword

Query Translation

Get from “EMPLOYEES” table the following columns:

- FIRST_NAME Rename it to “First Name”

- LAST_NAME Rename it to “Last Name”

- HIRE_DATE Rename it to “Hire Date”

- GENDER Rename it to “MALE/FEMALE”

We need to filter this data
In this requirement we don’t want to retrieve full data from the table, but we need to get data that

matching certain conditions

Filter

 Condition

To filter records based on one or more conditions we add the keyword “WHERE” then we add our conditions

Get all columns from “EMPLOYEES” but only records the matching conditions that ANNUAL_SALARY

is less than 50K

You can merge between conditions using logical operators such as AND, OR, and you can check the

opposite of a condition using NOT operator, in the following table we summarize the operators

Operator Description Example

Query Translation

FIRS_NAME = ‘John’

SALARY > 1000

AGE < 30

AGE >=25

WORKING_HOURS <=17

DEPARTMENT <> ‘HR’

SALARY BETWEEN 115000 AND 120000

CITY IN (‘NEW-YORK’,’CAIRO’,’DUBAI’)

LAST_NAME IS NULL

NOT DEPARTMENT IS NULL

Check where DEPARTMENT

column has a not NULL value

Equal to

Greater than

Less than

Greater than or equal

Less than or equal

Not equal

Check that value is within a range

Check the column values exist or not in specific values

Check if column value is Null or not

Check if the condition is not met

=

>

<

>=

<=

<>

BETWEEN … AND ...

IN

IS NULL

NOT

Examples

Query Explanation

Get all columns from Employees table that has a gender

equal to “M”

Get First name, and department name for employees who

their salary is greater than 10K

Get Employee ID from employees table where employees

department is one of the following (HR, Finance, IT)

SELECT *

FROM employees

WHERE gender='M';

SELECT FIRST_NAME, DEPARTMENT

FROM salaries

WHERE SALARY>10000;

SELECT EMPLOYEE_ID

WHERE DEPARTMENT IN (‘HR’,’FINANCE’,’IT’)

We have another kind of operators to combine between multiple conditions such as AND, and OR

Operator Description Example

AND

OR

Examples

Query Explanation

Get all columns from Employees where last name has null

 value and gender of the employee is Female

SELECT *

FROM employees

WHERE LAST_NAME IS NULL AND gender='F';

Get all columns from employees tables where annual salary

is between 40K and 50K and employee hiring date is after

1st of October 2019

SELECT *

FROM EMPLOYEES

WHERE (ANNUAL_SALARY BETWEEN

40000 AND 50000) AND

 HIRE_DATE > '2019-10-01';

Merge more than one condition and all of the conditions

must be true for example, Condition 1 AND Condition 2

Condition 1 and Condition 2 must be fulfilled

One or both of the conditions can be true to the overall

statement will be true For example, Condition 1 OR

Condition 2 If Condition 1 or Condition 2 is fulfilled that

means the overall condition is fulfilled

FIRS_NAME = ‘John’ AND

DEPARTMENT_ID = 10

HIRE_DATE >

‘2020-10-1’ OR

SALARY > 1000

We need data in Specific Order
Now lets add another block to our SQL query to specify the order we need to be in our output results,

let’s say I need to show the most recent hired employees data or I need to see the orders placed in my

store by the value from the bigger value to smaller value. We can achieve that by using ORDER BY

As we can see from this template to order based on column or a set of columns you simply put the column

name after ORDER BY statement and specify the order is ASC (Ascending) or DESC (Descending).

You can order by more than one column by placing a comma “,” then add other column with order.

What will happen is that the database engine will order based on first column then order by the next

column and next column and so on.

Lets take an example of the below employees table

We have a requirement to read data per department, then we need to see inside each department

employee’s data from highest salary to lowest salary, to achieve this output we will write the follow-

ing query

Note in case of character column order will be based on alphabetical order, in our case H letter is

before I that is why we have HR department comes first, in case we will order Descending the IT

department will come first.

By default, the order is Ascending. If you did not specify the order of the column

SELECT *

FROM EMPLOYEES_DB

ORDER BY DEPARTMENT, ANNUAL_SALARY DESC

Output will be

Query Explanation

Count number of records from employees table

Get count of all available values in COMMISSION_PCT

Note: Records with null value in this column will not counted

SELECT COUNT(*) FROM employees;

SELECT COUNT(COMMISSION_PCT)

FROM employees;

Sum all values in SALARY column to get the total value of

salaries for all employees

Get average of all values in SALARY column

Get standard deviation of all values in SALARY column

SELECT SUM(SALARY) FROM employees;

SELECT AVG(SALARY) FROM employees;

SELECT STD(SALARY) FROM employees;

Now we have another scenario that we need to get information from aggregating or summarizing data

from multiple records, in this case we are talking about aggregation functions.

Let’s say we need to get count of all records in our table, or get the total salaries across all employ-

ees, check the following examples

You can add filters on above queries to select specific set of records based on your condition as we

learnt before, and you can meagre between more than one aggregation function to be in the output

as following

a) Aggregation over all records

Summarize your data and get insights (Aggregation)

We need to get aggregations for our employees table, but we need this to be per department or per

any other column, in this case we need to use another block to inform engine which group column we

need

SELECT DEPARTMENT_ID, COUNT(*) 'Number of Employees'

FROM employees

GROUP BY DEPARTMENT_ID;

b) Aggregate data based on group of columns

In this query we are telling the engine to get number of records since we didn’t specify column names

and group the output per department ID so we can know number of employees per department

Its not allowed to specify group by columns without GROUP BY statements because it is not logical to

tell the engine we need get column values beside aggregated values without telling the engine that we

need the columns mentioned to be used as group by for aggregations

Note

SELECT DEPARTMENT_ID,

COUNT(*) 'Number of Employees'

FROM employees;

Error Code: 1140. In aggregated query without GROUP BY, expression #1 of SELECT list contains

nonaggregated column 'employees.DEPARTMENT_ID';

We learned before that we can filter our query output using WHERE, but what if we need to filter the

aggregated value itself, in this case we will use different statement which is HAVING

Lets say we need to check departments where total number of employees is greater than 30, in this

case we will write the same query but we will add our filter using HAVIG as following

You can merge multiple conditions also in HAVING as we did before in WHERE clause

c) Filtering Aggregated value

SELECT DEPARTMENT_ID, COUNT(*) 'Number of Employees'

FROM employees

GROUP BY DEPARTMENT_ID

HAVING COUNT(*) > 30;

In out case lets say we need also to know departments which has over 30 employees and total salaries

for this department is over 300K

SELECT DEPARTMENT_ID, COUNT(*) 'Number of Employees'

FROM employees

GROUP BY DEPARTMENT_ID

HAVING COUNT(*) > 30 AND SUM(SALARY) > 300000;

here we didn’t specify SUM(SALARY) to be part of the output columns, we included in the condition only

and this is totally fine.

Note

In most of the cases, you do not have your data in one table, you have more than tables in some cases hundreds of

tables, to do that we need to join data from multiple tables and to do that we will use JOIN and its different types

We have different types of join between two tables depends on your requirement you select the proper type To

join between two tables, you need to identify a Key, which is a column or a set of columns that links between the

information in the two tables, for example, to join between EMPLOYEES table which has employees information

and DEPARTMENT table which has department information you may join based on department ID.

In this type get all matching and only matching data records from both tables that has the same key values

Get data from more than one table

Inner Join

Match

Left

No Match

No Match

Match

Match

Right

No Match

No Match

Match

10

20

30

40

10

30

50

60

10

30

Output

SELECT E.FIRST_NAME, E.LAST_NAME, D.DEPARTMENT_NAME

FROM employees E INNER JOIN departments D ON E.DEPARTMENT_ID = D.DEPARTMENT_ID ;

You can give table alias the same as we did for columns before, and use this alias to refer to any column from that

table as we will see in the following example of the inner join

Get all data from the Left side table regardless there is a matching key or not, for the Left side, if there

are matching records bring its value, in case no matching values

Left Outer Join

Match

NULLNULLNULL

Left

No Match

No Match

Match

Match

Right

No Match

No Match

Match

10

20

30

40

10

30

50

60

10

20

30

40

Output

NULLNULLNULL

Here we will get all records from employees table and try to match with records from jobs table using

JOB_ID to get the job description, as we are using left outer join and, in this case, left table is Employees,

so in case no match we will get NULL in job description as we described before.

SELECT E.FIRST_NAME, E.LAST_NAME, J.JOB_TITLE

FROM employees E LEFT OUTER JOIN JOBS_2 J ON E.JOB_ID = J.JOB_ID ;

Get all data from the Right-side table regardless there is a matching key or not, for the Left side, if there

is matching records bring its value, in case no matching values.

Right Outer Join

Match

Left

No Match

No Match

Match

Match

Right

No Match

No Match

Match

10

20

30

40

10

30

50

60

10

30

50

60

Output

NULLNULLNULL

NULLNULLNULL

You will get all the possible combinations between the two tables for example if you have 10 records in

both tables, you will get 100 records in the output, TAKE CARE and be very careful when using this type

as it is very costly in terms of processing and resources usage on your engine especially if you have

big number of records.

CROSS Join

Match

Left

No Match

No Match

Match

Match

Right

No Match

No Match

Match

10

20

30

40

10

30

50

60

In this quick guide we described the main building blocks of SQL query and when you will need each

statement and how you will use it in your query, following is summary of what we had discussed in this

quick guide:

- Select columns from table – SELECT

- Rename output columns – Column Alias

- Filter output results – WHERE

- Order the results by columns – ORDER BY

- Aggregate the data and group aggregated data by specific columns – Aggregation functions

- How to join between multiple tables – Join (INNER, LEFT, RIGHT, CROSS)

We would like to hear from you if you have any enhancement or recommendations to make this guide

better or enrich it please email us on wecare@datavalley.technologies

Summary

